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Molecular device'sprovide direct access to highly miniaturized
components such as logic gatesyitches’ molecular shuttle$,
and information storage® One powerful tool for the creation of
these devices is the control of supramolecular interactions via
external inputg® including such diverse stimuli as chemical,
electrochemical, and photochemical signals. Of these stimuli,
electrochemical and photochemical inputs and outputs are amongrigure 1. Predicted hostguest complexe&:2ox (Amber force field)
the easiest to interface to macroscopic systems, making them

amenable to the multi-scale engineering required for the eventual 1.4 .
creation of pragmatic devices. trans
In recent studies there have been many examples of molecular 1.2
devices that utilize either photochemitalr electrochemicéa? wsﬂuv (360 nm)
inputs to control their function. These systems, however, have 10]

generally relied on two-state switching (eoff) for individual cis
supramolecular functions. One way that the versatility of these
devices can be enhanced is through the use of multi-state systems.
For example, a three-pole supramolecular switch was reported
which used TTF in its three stable electrochemical stdtéhis
diversity of function can be further expanded through factorial
combinations of orthogonal input stimuli that possess two or more 0.4
states eack-!3 This results in a device with a vastly increased
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Table 1. Binding Constants, Reduction Potentials and Free
Energies for Hosl—Guest2 Complexes

O By AGWD Ko~ Euf®  AG® Ko
receptor (M~3)2 (mV)° (kcal/mol) (M~ (mV) (kcal/mol) (M~

none - —1063 24.54 - —1516  35.00 -

< 1lc

o <
E e
w !

1
lyans 9750 —1103 2546 2054 —1548 3574 501 trans
Leis 575 —1087  25.09 228 —1529  35.30 136 Ka = 9750 M -1 Ka=575M .
2 Determined through NMR titration (23C, CDCE). ® Concentra- AEq 2 AEq/2
tions used:1 = 0.0025 M, 0.005 MY 2=0.00 5 M in 0.1 MTBAP -40 mV -24 mV

solution in CHCI, at 23°C, referenced to ferrocene. Uncertainties for
22X = 5% (from standard error of the titration curve fis~ andKa~
= 20% based ort2 mV for voltammetry.
1cis

1).1516The 16-fold decrease in binding for thgs2° relative to [ =
the Lyans* 2°% System arises primarily from the loss of the favorable

aromatic stacking interactions upon isomerization and is possibly Tirans

accentuated by unfavorable dipolar interactions between the azo Ka = 2054 M -1 Ka=228 M -1

group and the naphthaldiimide guest. AEq/p AE1)o
Cyclic and square wave voltammetry were then performed on “_32 mvV |l-13 mv

the cis andtrans host-guest systems to determine the effect of
guest redox state on recognition efficiency. The reduction of guest
2 demonstrated the formation &f- and2= as stable redox states. o o
Addition of receptorlyans resulted in a movement to more
negative reduction potentials for both the first and second -
reduction. This is indicative of unfavorable interactions that
develop between the relatively electron-rich azobenzene group Ttrans Tcis
that occur as gues? is converted from electron-poo2%¥) to K. =591 M- K.=138 M-
electron-rich 2~ and 27). A similar negative change ik, is a a
observed upon addition dks, indicative of dipolar repulsion  Figure 3. Schematic of redox and photochemical switching of th2
between the electron-rich reduced guests and the azo functionality complex.

Using electrochemically determined changes in free energy,

we were able to determine th&’s of receptorl with guest2 in Tose
all three oxidation states (Figure B)As shown in Figure 4, these

six binding states possess five distinct affinities (with 1he2°% 162"
and 1yans2= possessing experimentally indistinguishable affini-

ties), spanning a 70-fold rang&More significantly, analogous 1525

to numerous macroscopic devices such as dimmer switches and
volume controls, these affinities are approximately equally spaced
exponentially through the entire dynamic range between the two
extremes. This ability to control recognition in a finely tuned  ,_ .-
stepwise fashion allows the potential fabrication of highly complex

VrangZ

and tunable systems. Trang™
In summary, we have demonstrated the creation of a single 2700 2.50 3.00 3.50 2.00
host-guest dyad that possesses six states featuring five discrete log kg

binding affinities. These affinities are equally spaced exponentially rigyre 4. Graph showing binding constants complexes arising from
different redox states of gue&tand conformations of hogt
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